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When the concentration of polymers in solution reaches a level where the polymers begin to 
interpenetrate each other, screening phenomena come into existence. There are two screening lengths, 
one relating to the size of the molecule, an equilibrium effect, and a dynamic screening length. These 
effects are compared by the use of extrapolation formulae which express these lengths in terms of the 
physical parameters of the system. 
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IN TR ODUC TION 

The various viscoelastic properties of solutions of long 
polymer chains are dependent on the degree of 
polymerization, n, the polymer monomer concentration, 
p, and the nature of the solvent. These properties can be 
understood in terms of the excluded volume interaction, 
the hydrodynamic interaction and the entanglement 
constraints. When many chains are present in the 
solution, the bare excluded volume and hydrodynamic 
interactions are screened. Let ~ and ~, be the screening 
lengths for the excluded volume and hydrodynamic 
interactions, respectively. Although ~ and 4, are assumed 
to be the same in the semidilute case in the literature ~, the 
physical reason for this identity is not obvious since the 
excluded volume effect is static and the hydrodynamic 
interaction is purely dynamic. It is also important to know 
the ratio of these quantities even in the case where it is a 
pure number. We present here explicit formulae for the 
relation between ~ and ~, in terms of monomer 
concentration and the strength of the excluded volume 
interaction both varying from very low to very high and 
verify various scaling results, where applicable, by explicit 
calculation. In this brief communication we focus on the 
important results obtained and an outline of the 
mathematical methods used. The algebraic details are 
presented elsewhere. 

Screenin9 of excluded volume effect 
The excluded volume interaction I -4 between polymer 

segments is modelled by a delta function pseudopotential 
of strength w so that the interaction between two polymer 
segments at a distance r apart is given by w126(r.), where I is 
the Kuhn step length. The parameter w includes the net 
result of polymer solvent effects and varies with 

T - O  
temperature, T, as ~ (0 = the Flory temperature). For 

a semidilute solution, where the chains strongly overlap, 
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the density fluctuations are significantly correlated. It is 
this correlation which leads to the screening of the 
excluded volume interaction. We consider the correlation 
of density fluctuations using a combination of path 
integral and field theoretic techniques. Our treatment 
leads to the renormalizations of the bare excluded volume 
interaction and the step length of a labelled chain. The 
details are presented in ref 5. The bare interaction wf(r) 
becomes, upon renormalization, an effective screened 
interaction, A(r), 

A(r) = wlZEg(r)-(4n~2r) texp( - r/~)] (1) 

where ~ is the screening length which depends on polymer 
monomer concentration, p, and the nature of the solvent 
through w. 

The renormalization of the step length, l, arising from 
the correlated density fluctuations, leads to a new effective 
step length, 11, such that the mean-square end-to-end 
distance of the labelled chain is given by 

( R  2) =LI 1 (2) 

where L = nl is the contour length of the chain, l 1 depends 
on w and p through 4. In general 11 and ~ are coupled by 
integral equations. Both of these depend on L, w, p, q and 
k, where q is the chain mode label and k is the Fourier 
conjugate variable to the position variable. In the limit of 

and I1 being independent of wave vectors and for 
infinitely long chains, the coupled integral equations 
reduce to algebraic equations: 

- 2 = 6wpl/ll(1 + 27w~/8nl~) (3) 

13-l~l=czw¢l (4) 

where e is an unknown numerical prefactor of order unity. 
This unknown factor arises from the statistics of a single 
chain in an infinitely dilute solution. Although e can be 
given a theoretical estimate 6, there are difficulties in 
reconciling the theoretical, computer simulated and 
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experimentally found values. So we suggest it to be taken 
as an experimental quantity for it can be obtained from 
experimental measurement of the mean-square end-to- 
end distance of a chain in an infinitely dilute solution from 

(R 2) =Lll 

- -  ~ / 1 /  - ? / 2 0  

(5) 

Equations (3) and (4) give the dependences of ~ and 11 
on w and p which can vary from zero to infinity. In the 
region of criticality, limit w ~  ~ or p ~ 0 ,  equations (3) and 
(4) reduce to the familiar scaling results 

//9~ "~1/4 1/4 tx=l, ) w ,-,/4 

=(91167t~l/3)3/4W- 1/4 l -  l p -  3/4. 

(6) 

(7) 

Thus for low polymer concentrations, the excluded 
volume screening length depends on p with - 3 / 4  power 
law for very good solutions. Also note that (R 2 ) in good 
solvent varies like p-1/4 

In the other limit of p ~ ,  or w--,0, l~ and ¢ become 
from equations (3) and (4) 

W 1/2 

11 =l+ 61/2 lpl/2 + ... (8) 

= (6wp)- 1/2. (9) 

Thus for very high polymer concentrations, ~ depends on 
p with - 1 / 2  power law, a result obtained earlier by 
Edwards 4. Therefore equations (3) and (4) are the 
extrapolation formulae valid from very low to very high 
concentrations for any strength of the excluded volume 
interaction. Note that for a mathematical theta solution 
(all the virial coefficients except the first are zero), 
diverges to ~ because w~0.  These results are presented in 
Table 1 for a comparison with in. 

The various thermodynamic properties like the 
osmotic pressure of the polymer solution, and the average 
size of a labelled chain can be obtained from 11 and 4. 

Screening of hydrodynamic interaction 
In the absence of polymer chains the solvent alone is 

assumed to satisfy the linearized Navier-Stokes equation 

&(r,t) 2 
p o ~ 7 - -  - t/oV 12(r,t) + VP(r,t) = Eedr,t) (lO) 

Here v(~,t) is the velocity field at any space point r and time 
t, P is the pressure, % is the shear viscosity of the solvent, 
Po is the mass density of the solvent and ~'ext is the external 
force driving the solvent flow. The velocity field at (r,t) due 
to a disturbance at (r',t') is obtained from the Green 
function of equation (10), 

~2(r,t) = ldr 'd t '~( t  - r' ;t - t')" E ~,t(r',t') 
, /  

(11) 
, / ' d 3 k  ~ ' d o g e l - / ) - i  (t-t') 

T a b l e  I Comparison of the screening length, ~, for the excluded 
volume effect and the screening length,/~H, for the hydrodynamic 
interaction as functions of polymer monomer concentration, 19 

Concentration regime ~ /JH 

Concentrated p - l / 2  p-1 
solution 

Semidilute solution 19-1 poor solvent 

19--3/4 
Semid i lu te  so lu t ion  19_3[ 4 32 
good solvent ~JH = T ~ 

Extrapolation formu- ~--2 = 6wpl lr 
lae connecting diffe- /1(1 + 27w~/8rrl~) ~ 1  =2  19Ill 
rent regimes 1 3 1211 = clw~l 3 2 - -  1 1 - -  I l l  = a w ~ l  

where k is Ik]. In the zero frequency limit, ~ becomes the 
familiar static hydrodynamic interaction tensor, 

The presence of polymer chains alters the hydrodynamic 
interaction between any two spatial positions so that 
equation (12) is significantly renormalized. Indeed this 
renormalization leads to hydrodynamic screening. The 
hydrodynamic screening can be obtained by deriving the 
equations of motion for the coupled polymer-solvent 
system, and is summarized by formulae (21), (22) and (25). 
Readers not wishing to study an outline derivation can go 
to these equations. 

Consider a solution containing N chains (a = 1,2,..N) 
each of contour length L. Let g=(s~) denote the position of 
~th chain at an arc length of s~ from its end. We assume 
that all these chains undergo excluded volume interaction 
given by A(r), equation (1). In addition, we employ the 
'stick' (or Stokes) boundary condition, 

0 
~ll=(s~,t) = ~[ l~(s~,t),t ], (13) 

to couple the dynamics of the chains and the solvent. Since 
frictional forces are now present in the system, the 
Rayleighian of the system should be constructed first and 
its time integral should be varied (see refs 8-10 for details) 
to obtain the following coupled equations of motion, 

P o ~-&2(Gt) _ qoV212(Gt) + VP(Gt) 

L 

= ~" ext(,/~, t ) --~- a =~1 f ds.f(r-~=(s~,t))aA(s=,t ) (14) 

0 

3kBT 632~(s~,t) 
l Os~ 

L 

F #~= l f dS#~ l~=(s~,t)A[ l~.(s=,t ) - /~#(s#,t) ] 
0 

= - ¢As~,t) +J(s~nt). (15) 
/~ ~random 

These equations are obtained by ignoring inertial effects. 
Here a~(s~,t) is a Lagrangian multiplier arising from the 
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stick boundary condition and possesses a simple physical 
interpretation of the force exerted by s,th position of ~t.h 
chain on the surrounding solvent. £andom(S~,t) is the 
random force acting on the s,th position of ct originating 
from the various hydrodynamic fluctuations present in 
the solution, kn is the Boltzmann constant. 

Equation (15) differs from the corresponding equation 
of Freed and Edwards 9'~ 0 in that the latter omits excluded 
volume effect altogether and that it includes an 'ad hoc' 
term for the bead friction coefficient which is un- 
necessary to describe the viscous properties of polymer 
solutions. The earlier work xa of Freed, Edwards and 
Warner to include the effect of excluded volume effect on 
the dynamics of polymer chains in solution attempts only 
in a perturbation sense of omitting terms of order w 2 and 
is not adequate. 

By Fourier transforming with respect to s,, equation 
(15) gives the equations of motion for the Rouse modes, 

L L 

3kBT 2 
-1 q ~=(q't)+#~=lf f f d3k ds~ ds~ (2~-lkA(k) 

0 0 

exp {iqs, + i/~. [,g=(s,,t)-/~;;(so,t)] } = - q~(q,t) +J]q,t), 
/ ~  -random 

(16) 

where q is the mode variable. This shows that every chain 
mode is coupled to all other modes due to excluded 
volume interaction. We have calculated the effective force 
on the qth mode due to excluded volume effect by 
averaging over all other modes using mode~mode 
coupling arguments. The details are presented elsewhere 5 
and the result is that equation (16) reduces to 

3knT 2 

/ 1 ~  q /~,(q,t)= -¢A(q,t)+~aqJ) m. (17) 

In the limit of q~0 ,  11 is given in terms of the excluded 
volume screening length, 4, by equations (3) and (4). 

Utilizing the stick boundary condition, equation (13), 
g, from equations (14) and (17) can be eliminated and the 
microscopic velocity field v(c,t) can be expressed as a 
multiple scattering series involving various polymer 
chains in terms of l~. Instead of these complicated 
microscopic quantities we are interested in the average 
properties like macroscopic velocity field, etc. Performing 
the average over the positions of the chains, an effective 
macroscopic equation of motion can be written for the 
whole polymer solution, 

&t(C,t) q0V2~(r,t ) ~'dr,dt, Z(£-  r';t - t')'u(r',t') P o ~ -  + VP(~,t) - j ~ = ~ ~ 

= F o ~ , t )  (18) 

where u(=(~)ch,mO is the average velocity field after 
averaging over the positions of all chains and P is now the 
average pressure. The tensor E accounts for the 
contribution of all the chains to the average divergence of 
stress tensor of the polymer solution. By Fourier 
transforming equation (18) with respect to r (/~-,. conjugate 
variable) and t (e~~conjugate variable), and defining 
- E(k)/qo - ~ 2(k), we get 

[kopo + qo(k2~ 2(k))]u(k,oJ) + ikP(k,~) = E~xt(k,~o). 
(19) 

Since we are discussing here the Navier Stokes fluid flow, 
equation (19) should satisfy the invariance symmetry of 
E(k = 0) = 0. For low k, E(k), i.e., ~ff = indeed behaves like k 2 
as shown below. The coefficient of k 2 of E(k) for small k, 
gives the change in viscosity, q-~/o, due to the polymer 
chains, 

0 / -  q0)/q0 = limCh 2(k)/k2 (20) 
k ~ 0  

The average velocity field, u(~,t), in addition to being 
given by equation (19), is also given by (V~(~,t))chain~ where 
is a multiple scattering series in terms of 11, as mentioned 
earlier. By averaging the various terms in the multiple 
scattering series of (v)  and summing up and then 
combining with equation (19), ~, is given, in the zero 
frequency limit, by the coupled integral equations, 

pl ~ , (k2la/3)J(q) 
~f/2(k)= 

nrl~ ° J uq[(k21t/6)2 + q2] 
2 y 

(21 

oc 

1 f j2 (j211/3) (22) 
j -  l(q) = 3~qo dj[j 2 + ~ 2(j)] [(j211/6)2 + q2] 

0 

The preaveraging approximation and the averaging over 
chain statistics have been employed in deriving equations 
(21) and (22). 

Note that, in the limit of k-*0, ~72 is proportional to k 2, 
thus satisfying the Navier-Stokes fluid flow symmetry. In 
addition, for infinitely dilute solutions where ~72(i) can be 
ignored in equation (22), J-~(q) is proportional to 
(~121tq) -1/2. Substitution of this result in equation (21) 
yields 

~H 2(k) = o~ pl131/2L1/2k 2 (23) 

Therefore the intrinsic viscosity, [q]=(q-qo)/qoP, is 
given by 

[r/-] = 0~113 ,; 2 L t ,2 

,~L 1/2 0 solvent 
[L 4;'5 good solvent 

(24) 

for infinitely dilute solutions. The results of equation (24) 
for 0 and good solvents are obtained by using the 
expression for 11 from equation (5). 

Now the average velocity field at r, ~(c), due to an 
external disturbance at r' is given by the Green function of 
equation (19), in ~ 0  limit, 

u(r) = f dr' Q(r'r')Ee,,(r') 

A 1 ('dak ( 1 - k  2kk ,., , 
(~(z') = ~o J(2n)~ [k 2 ~ ] e x p u g ' £  / 

(25) 

This is analogous to equation (11)except that the effect of 
all chains on the dynamics of the whole polymer solution 
appears through ~ffZ(k) of the Green function, Q. It is 
obvious from the structure of G that the bare 
hydrodynamic interaction G is screened when ~,(k) 
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becomes independent of k. Therefore we shall look for a 
solution of i ,  from equations (21) and (22) such that in(k) 
is independent of k to entail hydrodynamic screening. 
Clearly for small k, i.e., for large characteristic distances, 
~ff l(k) is proportional to k ensuring that for such large 
distances as the size of the container the fluid flow 
dominates and that there is no hydrodynamic screening. 
However, for large k, in(k) becomes independent of k 
provided J(q) in equation (21) is independent of q. 
Satisfying these conditions self-consistently in equations 
(21) and (22), the solution is 

j -  l(q) = 2iH/Trqoll (26) 

i ~ 1 = (rt/2)pll l. (27) 

Thus the hydrodynamic screening length, ~n, is given in 
terms of l~ which in turn depends on the excluded volume 
screening length, ~, through equations (3) and (4). 

Use of equation (26) in equations (20) and (21) yields in 
small k limit 

(q -qo)/qo=pl12L/127zit~=(1/24)p21213L (28) 

thus reporducing the Rouse result of (~/-r/o)oc L when the 
hydrodynamic interaction is screened. Since Ix depends, in 
general, on p as given by equations (3) and (4), the polymer 
solution viscosity, in the hydrodynamically screened 
regime, depends on p as pr where y varies from 5/4 to 2 
depending on the strength of the excluded volume 
interaction. 

As mentioned earlier, ~ocp -z, with g varying 
continuously from 3/4 to 1/2 as p increases. Also X 
decreases from 3/4 as the strength of the excluded volume 
interaction, w, decreases. In the limit of w~0,  ~ diverges to 
infinity as explained earlier. On the other hand, equations 
(3), (4) and (27) show that IHocp-Xu with Z. varying 
continuously from 3/4 to 1 as p increases or w decreases. 
Thus i and ~u possess distinctly different p dependences. 
However, in the region of criticality, w-.  oc or p-~0, both 
and ~. behave a s / 9  -3/4 in agreement with de Gennes' 
result ~2. In spite of the same concentration dependence, 
they are not identical since their ratio is 

I /¢ .=9 /32  (29) 

This rbsult is obtained from equations (6), (7) and (27). The 
inequality ~ < i n  for a semidilute solution of phantom 
chains in the critical limit of w~oQ suggests that the 
excluded volume interaction is screened out faster than 
the hydrodynamic interaction as a function of the spatial 
distance. This casts doubt on the validity of extending the 
scaling arguments over a wider range of variables as is 
often done in the literature 13,14 utilizint (R 2) oc p-  1/4 and 
Rouse behaviour for the chain mobility in describing the 
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chain dynamics in semidilute solutions. If these arguments 
were valid then the viscosity should vary with p as p5/4 
[see equation (28)]. However, the experimental data ot 
Pearson and coworkers 14 show a dependence of p3/2. 
Another important difference between ~ and Cn is that 
while i is determined by the wave-vector independent 
limit (i.e., large distances characteristic of the size of the 
system), Cn is determined by large wave-vector limit of 
characteristic distances within the size of a single chain. In 
conclusion, i and iu are two different screening lengths 
arising from widely different physical origins, and are 
compared in Table 1. 

The results presented so far are obtained by assuming 
that all the chains are penetrable phantom chains without 
any entanglement constraints roughly speaking 
corresponding to physical conditions where there is little 
viscoelastic behaviour. The problem of the entanglement 
effects on the dynamics of chains in semidilute solutions 
and a derivation of the radius of the tube, if and when it 
exists, through which a chain reptates, remain still 
formidable. Therefore the Table 1 needs to be appended 
with another column for the radius of the tube in a 
polymer solution. It is of interest to also find out the effect 
of entanglements on the ratio ~/~u of equation (29) for 
semidilute solutions. Although ~ should be independent 
of entanglement effects, it is not obvious how I ,  is affected 
by the entanglement effects. The question of whether the 
entanglement constraints change the ratio ~/~u only 
merely by a constant or by a functional dependence on p 
remains open. 
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